Syllabus for MATH 754

Infinite-dimensional Lie Algebras and Applications Spring 2019

1. About the Course

This course will be a detailed introduction into the structure and representation theory of some of the most important infinite-dimensional Lie algebras: Heisenberg algebras, Kac-Moody algebras, and Virasoro algebra.

Major topics to be covered:

• Heisenberg algebra, Virasoro algebra, and affine $\hat{\mathfrak{g}}$ as universal central extensions

• Representations of Heisenberg algebra, Virasoro algebra, affine \mathfrak{sl}_n via Lie algebras $\mathfrak{gl}_{\infty}, \mathfrak{a}_{\infty}$, and application to integrable systems

- Boson-fermion correspondence: vertex operator construction and Schur polynomials
- Feigin-Fuchs-Kac determinant formula for Virasoro and the region of unitarity
- The Sugawara construction and the Goddard-Kent-Olive construction
- Structure and representation theory of Kac-Moody algebras
- The Weyl-Kac character formula and the Kac-Macdonald identities
- Shapovalov-Jantzen-Kac-Kazhdan determinant formula for Kac-Moody algebras

2. Lectures

Location: DL 431 Time: TTh 1:00–2:30pm

Instructor: Sasha Tsymbaliuk Email: oleksandr.tsymbaliuk@yale.edu Office: LOM 219-C Office hours: TTh 3:00–4:00pm

3. References

The material of this course is based on:

• Book "Bombay lectures on highest weight representations of infinite dimensional Lie algebras" by V. Kac and A. Raina, 2nd edition, 2013.

• Expository paper "Representations of contragredient Lie algebras and the Kac-Macdonald identities" by B. Feigin and A. Zelevinsky, 1971 (to be distributed in the class).

• Book "Infinite dimensional Lie algebras" by V. Kac, 1983.

4. Requirements

To pass the course it will be required to solve homework assignments, which will be assigned every Thursday and due the following Thursday.